Автомобили, топлинни машини, алтернативни горива > Разлагане на водата

Водородна продукция чрез електролиза със ултра-късо пулсиращо захранване

<< < (2/17) > >>

момчо:
3. Експеримент

За да се изследва просеца на водна електролиза получен при подаване на ултра-късо пулсиращо захранващо напрежение, в електролитна баня с обем от 3.4 литра и разтвор 1М на КОН бяха потопени 3.3х9 cm платинени плочи използвани като анот и катод. Разсоянието между тях бе настроено да е 3 cm. Темепературата на разстворът бе потдържана на ниво 293 К +- 2К ( 19.85 C +- 2C) повреме на експеримента. Конвенционално рахраващо напрежение за прав ток и ултра-късо пулсиращо захранващо напрежение за използвани паралелно за сравнение на резултатие. Ултра-късото захранващо напрежение (УКЗН) съставено от ИЕКВ и СИТ е показано на фигура 1. Ултра-ксъи пулсации с дълцина на пулсирашото напрежение около 300 ns, със втроичен пик на напрежението от 7.9 до 140 V са приложени в електролитната баня със честота на пулсациите в диапазона 2-25 kHz. Входящото напрежение бе изненяно с увеличаване на пулсовата честот.
Във веригата на ИЕКВ (фиг.1), гейтът на СИТ е свързан с анодът му чрез диод. Когато FET-ът е включен, потокът през намотката (L1) постепено се увеличава. Когато FET-ът е изключен, при определно ниво на напрежението, потокът се свива и инвертното напрежение Vp1 се индуцира в намотката (L1). Тази ИЕКВ верига е най-простата и компактна позната до момента за генериране на ултра-къси импулси [6-8].
При положение,че процес на водна електролиза се извърши изполвзйки тази верига, електродите във водната баня са свързани към вторичната намотка L2 както е покзано на фиг1. Пуслиращото напрежение Vp2 е индуцирано във втроичната намотка L2, синхронизарано със пулсиращото напрецение Vp1 както е показано на фиг.2. През първата фаза, когато вторичното пулсиращо напрежение е приложено към електродите във електролитната баня, съшата (баня) имитира кондензатор понеже пулсът е прекалено къс, за да може йоните в развтрорът да пренесът електричният поток между електродите. Това дава много къс пулсиращ ток във веригата през вторичната намотка (L2).  Този ток е много кратък за да се види на фигурата. Така водната баня не е истински кондензатор понеже всички електрони приети на катода са отдадени на водородните йони и заряда не е постоянен както при обикновненият кондезатор. След като се приложи пулсиращото напрежение във водната баня, през вотрата фаза, потокът I2 преминава през веригата. Този ток протича много бавно както се вижда на фирурата и трае няколко десети микросекунди. Когато подаването на пулиращото напрежение Vp2 бъде прекратено, потокът I2 не се ползва за трансфер на електрони към водороните йони, а трансфер на самите йони във банята, компенсирайки по този начин липсата на водородни йони във близост до катодът.


Следва 4.Резултати и размишления.

georgi70:

Направо към: навигация, търсене
 
Графично означение на тиристорТиристорът (от гръцки тира-врата) е полупроводников електронен елемент. Тиристорът представлява управляем многослоен диод. Има нелинейна волт-амперна характеристика с две стабилни състояния (с ниска и висока проводимост) в права посока и притежава свойства на електрически вентил.

Най-разпространените тиристори имат четирислойна р-n-p-n структура и три p-n-прехода. Тиристорите се използват като електронни ключове с които могат да се превключват електрически вериги с високо напрежение (500÷1000 V) и с големи токове (50÷500 А). Поради по-добрите си качества в сравнение с механичните прекъсвачи тиристорите намират приложение в пускови схеми, регулатори, токоизправители и т.н.

Устройство и начин на работа  [редактиране]

КатодУЕкУЕаАнод
Вътрешна структура на тиристорВътрешната структура на тиристора съдържа четири слоя с различна дебелина - широк слой с p-проводимост (слой p1, анод), следван от много широк слой с n-проводимост (n1, аноден управляващ електрод), много тънък слой с p-проводимост (p2, катоден управляващ електрод) и широк слой с n-проводимост (n2, катод).

При подаване на напрежение между анода и катода (положително към анода и отрицателно към катода) преходите p1-n1 и p2-n2 са свързани в права посока, но протича само ток на утечка от обратно свързания преход n1-p2. С увеличаване на напрежението токът на утечка става достатъчно голям за да задейства транзисторен ефект през тънкия слой p2.


 Видове тиристори  [редактиране]
Ако приборът няма управляващи електроди се нарича диоден тиристор (динистор, диод на Шокли). Ако приборът е с един управляващ електрод се нарича тринистор (или просто тиристор!).

момчо:
4. Резултати и размишления (част.1)

Нивото на генериране на водород и ефективността на процеса са представени графично като функция на входящото напрежение приложено между електродите на фиг.3. При обикновенната електролиза, когато приложеното напрежение се увеличава, се увеличава и потокът, а от това се увеличава и нивото на гериране на водород, но тази ефективност сравнена с иделаната продукция, намалява от 40% при 2.2 V до 8% при 12.6 V. Тук, иделното ниво на продукция бе сметнато възоснова на термодинамични данни [10], за термодинамична енергия на водорода да бъде конвертирана до вода при стайна температура*. Спадът на ефективността може да бъде обяснен основно с това, че един електрон с висока енергия може да се превърне в един водороден йон, т.ч. разликата между приложеното напрежение и напрежението на декомозиция се прахосват под вормата на топлина. Докато токът сам по себе си също се увеличава с увеличаването на напрежението, електроните който не са използвани за освобождаване на водорода също се превръщат в топлина.
Противно на обикновенната електролиза, процесът при който се подават ултра-къси пусации на захранващото напрежени, е тотално раличен като механизъм и поведение на системата. Както се вижда на фиг.3a, при обикновенната електролиза, нивото на продукцията на водород не е пропционална на големината на входящото захранване. Тя се отклонява от иделната продукция. Ефективността на процеса е изчислена като отношение между реалната и идеалната продукция както може да се види на фиг.3b, т.ч ефективността е много намалена при обикновенната електролиза. Този спад се дължи главно на това, че енергията на множеството електрони се превръща в толина.
При пулсиращото напрежение, както се вижда на фиг. 3a, че генерирането на водород е увеличено докато напрежението е намалено. Трябва да бъде отбелязано, че въпреки всичко, нивото на продукцията на водород се увеличава във функционална зависимост от входящото напрежение.
-------------------------

Следва. (част 2), 5.Заключения, 6.Благодарности и 7.Справки (това са номерата в [квадратните] скоби в текста).
Извинявам се за закъснението, но последните няколко дни имах много работа, и програмата все още е натоварена. Ще се постаря да побликувам остатъка до не по-късно от 10.Април. Фигура 3 е разделена на 2 фаила и описанието се намира под втората графа Фиг.3б. Лека вечер.

момчо:
4. Резултати и размишления (част.2)

Този процес има различно поведение в сравнение с обикновенната електролиза. Когато входящото напрежение се увеличава като увеличаваме пулсиращата честота, ефективността не намалява при високите пикове на напрежението, и беше увеличена при нискте пикове както се вижда на фиг. 3b. Поведението на процеса е пълна противоположност с обикновенната електролиза. Увеличаването на ефективността при ниските пикове, може би се получава защото енергиините загуби са намалени, понеже всеки електрон има нисък енергиен заряд и пулсът има много остра форма на вълната за ниските пикове на напрежението. Поради тези прични, напрежението може да бъде ефективно консумирано за електролизата. Този факт води до заключението, че улктра-късото пулсиращо захранване при електролизата е обещаващ метод при който вложеното напрежене може да бъде увеличено дори и със увеличаване на ефективността на процеса.
При обикновенната електролиза, електричното поле винага присъства. Електричният двоен слой също присъства, както и дифузният слой. Така потокът се определя от дифузиаята на йони спроед разликата в йонната концентрация. Когато се приложенто напрежение се увеличава, ефективността намалява. Ето защо, при DC захранване, приложенто напрежение за даден обем от електролитната баня е ограничено.
При пулсовото захранване, електичното поле се прилага за много къс период, много по-малко от няколко милисекунди, който период е по- къс от времето необходимо за образуването на постояннен електичен двоен слой. Чрез прилагането на пулсовото напрежение, електроните се събират на повърхността на катода, както при кондензатора. Събраните електрони бързо се превръщат във водородни йони използвани за генерирането на водород, така че по повърхноста на катода не остават неизползвани електрони както при кондензаторите. След този транфер на електрони, токът I2 тече бавно както е показано на фиг.2, вероятно чрез дифузните йони във разтвора.
От показаното до дук, може да бъде заключено, че механизмът на електролизата при прилагането на ултра- късо пулсиращо захаранващо напрежение е коренно различен от този на обикновенната. При нея (DC) процеса се базира на електичният двоен слой и като цяло е дифузно DC електролиза ограничен просе, докато ултра-късото пулсиращо захранване е базиран на прилагането на високоенергийно електрично поле както и ограничен трансфер на електрони. Тази разлика явно е от основно занчение за практични и индустриални приложения, т.к. входящото напрежение може да бъде увеличавано без да има спад на ефективността.

5. Заключения

Ние показахме в този предвалителен доклад принципът на работа на ултра-късо пулсиращо захранване, съставено от СИТ и ИЕКВ, както и приложението му при продукцията на водород чрез електролиза на вода. Беше открито, че улктра-къси пулсации с дължина около 300 ns могат да генерират водороден газ. Също така бе открито, че входящото напрежение може да бъде увеличено без да се намалява ефективността на процеса. Насоящите резултати показват една вероятна насока за водна електролиза чрез ултра-късо пулсиращо захранване протичащо чрез процес на ограничено ниво на трансфер на електрони, който механизъм е коренно различен от този на конвенционалната DC електролиза.

Благодарности

Изказваме благоарности на  Messrs S.Ohno и T.Inaba за подкрепата и насърчението за този експеримент, г-н K.Matsuhiro, Y.Imanishi и S.Tange за помоща и консултацията, както и г-н M.Imeada за помоща му при практичният експеримент.

Справките то целият текс са на приложената каратинка.

момчо:
последните няколко дни съм намерил известно количество материал което ще филтрирам и публикувам тук.
има някои доста обещаващи фаилчета, както и различни схеми.
скоро темата продължава.
::)

Навигация

[0] Списък на темите

[#] Следваща страница

[*] Предходна страница

Премини на пълна версия