Автор Тема: Термодинамика и основни формули  (Прочетена 1967 пъти)

Неактивен Иван Димов

  • Експериментатор
  • Стабилен
  • ***
  • Публикации: 735
  • Рейтинг: 125
  • Невъзможно нещо е да докажеш, че нещо е невъзможно
Термодинамика и основни формули
« -: Март 02, 2017, 06:25:59 pm »
         ТЕРМОДИНАМИКА И ДИНАМИКА НА ФЛУИДИТЕ
   Тук ще нахвърлям някои мои мисли за да не се загубят докато дойде време да събера всичко в една бъдеща книга.
   Разглеждам едно тяло в диапазона от абсолютната нула до много висока температура, когато е в газообразно състояние. Първоначално студеното тяло е в твърдо състояние и притежава някаква начална своя топлина Q. Започваме да го нагряваме и тялото поглъща някаква порция топлина dQ. Погълнатата енергия отива за увеличаване на потенциалната Ер и кинетичната Ек енергии на частиците, съставляващи тялото, а така също и за извършване на работа А срещу външни за тялото сили. Главното уравнение е:
                          dQ = dEp + dEk + dA
   За идеалния газ има една формула за кинетичната енергия на една частица Ек(1ч.) = 3/2 кТ, където к е константата на Болцман, а Т е абсолютната температура. За по-голямо удобство въвеждам константата D = 3/2 k = 2.071*10^-23 или D е приблизително 2 по 10 на минус 23-та степен. Така можем да запишем Ек(1ч.) = DT. Съответно за един мол, в който има N на брой или 6.022 по 10 на 23-та степен частици, кинетичната енергия е Ек(1мол) = NDT, където N е числото на Авогадро. Знаем също газовата константа R за един мол. Тя е R = k.N = 8.314 и следователно ND = 1.5 R като интересното е, че 1.5R = 4П. Тук П=3.14 е числото „пи” и съвпадението е с точност до хилядните. Преди време Стефан Маринов се чудеше от къде се взема това 4П във формулите за магнетизма в Гаусовата система. Явно то е някаква пространствена характеристика, но не съм се задълбавал много да я разнищя докрай.
   Главното уравнение по-горе се отнася за един мол вещество и можем да запишем още така:
                 dQ = dEp + dEk + dA
                 dQ = dEp + NDdT + RdT
понеже Ek = NDT , следователно  dEk = ND.dT , ( ND=4П=1.5R е число)
 и още pV = RT ,  следователно    dA = p.dV = R.dT
   Така главното уравнение става:
               dQ = dEp + NDdT + RdT
               dQ = dEp + 1.5R.dT + RdT
          или    dQ = dEp + 2.5 R.dT 
      и накрая     Q = Ep + 2.5.RT
   Последното уравнение го използвам за да начертая графиката, показваща преминаването през различните агрегатни състояния. Тя не е конкретна за някое вещество, а показва само качествено нещата.

   На нея ясно се виждат стъпалните скокообразни нараствания при преминаване през различните фазови преходи. Има два такива прехода – единият е стопяване, а другият е изпарение и те стават при почти постоянна температура, но тогава потенциалната енергия Ер нараства със скок. През другите участъци на графиката имаме почти линейно нарастване като през това време потенциалната енергия Ер почти не се изменя. Потенциалната енергия е в пряка връзка с разстоянието между частиците. Колкото разстоянието по-малко се променя, толкова по-малко се променя и потенциалната енергия. И обратно, колкото повече се променя разстоянието между частиците, толкова повече се променя и потенциалната енергия както е при фазовите преходи.
   Още нещо интересно. По-горе записахме  dQ = dEp + 2.5 R.dT  Тук R.dT = p.dV = dA е работата на идеалния газ. Следователно можем да запишем dQ = dEp + 2,5.dA и разделяме на dQ вляво и дясно:
              dQ/dQ = dEp/dQ + 2,5.dA/dQ
              1 = dEp/dQ + 2.5.n ,  където  n = dA/dQ = КПД
   Следователно  2.5 .n = 1 - dEp/dQ
    И накрая     n = 0.4 (1 - dEp/dQ) = КПД
   Последното показва коефициента на полезно действие на стандартна топлинна машина. Вижда се, че той е твърде нисък и трудно може да надхвърли 40%. При това трябва да се обърне особено внимание как се променя потенциалната енергия dЕр при промяната dQ, защото ако потенциалната енергия може да намалява, въпреки че тялото поглъща енергия dQ, то тогава КПД-то ще може да надхвърли 40%.
   Да кажем две думи и за ентропията, която мъчи много студенти и не само тях. Дава се формулата за нарастването на ентропията:
          dS = dQ/T  Нека да заместим с нашето dQ = dEp + 2,5.dA
   Получава се  ТdS = dEp + 2,5.dA   Вижда се, че при постоянна температура, нарастването на ентропията всъщност е нарастване на потенциалната енергия на частиците плюс определена работа, която те извършват срещу външни сили. Въобще ентропията е смесена величина, съдържаща две съставки – потенциална енергия и извършена работа. Вижда се и как при нарастване на ентропията системата се раздува като извършва работа и увеличава потенциалната си енергия.

   Сега ще разгледам основното уравнение за реалните газове:
                             pV = zRT ,  където
  p, [Pa]  -  налягане в Паскали
  V, [m3] - моларен обем, в който има N (числото на Авогадро) частици
  R = 8.314  е газовата константа за един мол с N частици
  T [К] – абсолютната температура в Келвини
  z – променлива, показваща разстоянието между частиците
   Последната променлива z май рядко я използват, но тя е доста нагледна. Сега ще направя една математическа еквилибристика:
   От  pV = zRT   следва      d(pV) = d(zRT)
                       p.dV + V.dp = R(z.dT + T.dz)
   Вляво от знака за равенство деля на pV, а в дясно деля на zRT понеже pV = zRT   
   Получава се   (p.dV + V.dp) / pV = R(z.dT + T.dz) / zRT
                       dV/V + dp/p = dT/T + dz/z
   Последното може да го запиша и така:
                       dT/T = dp/p + dV/V – dz/z
   Тук се вижда, че при постоянна температура и постоянно налягане имаме dV/V = dz/z, което ни показва връзката на променливата z с обема на системата. Нарастването на обема води до нарастване на z. Въобще z показва каква част от частиците са се отдалечили от останалите. Променливата z варира от почти нула до единица за идеалния газ. Стойност 0.3 например означава, че около 30% от частиците са преминали в свободно състояние (изпарили са се) и вече по-слабо си взаимодействат с останалите. Ако z се доближава до стойност 0.9 значи почти 90% от частиците са се изпарили и вече са близо до състоянието на идеален газ. За идеален газ z = 1.
   Прилагам два файла с мои изследвания преди време на експериментални данни за водорода. Ето тук също съм обяснявал:
http://mazeto.net/index.php/topic,9085.msg62741.html#msg62741

Неактивен paparosko

  • Специалист
  • Подготвен
  • ***
  • Публикации: 175
  • Рейтинг: 72
  • толерантен
Re: Термодинамика и основни формули
« Отговор #1 -: Март 02, 2017, 11:23:57 pm »
Благодаря за интересния материал!

Неактивен Иван Димов

  • Експериментатор
  • Стабилен
  • ***
  • Публикации: 735
  • Рейтинг: 125
  • Невъзможно нещо е да докажеш, че нещо е невъзможно
Re: Термодинамика и основни формули
« Отговор #2 -: Март 05, 2017, 12:01:06 am »
   Понеже кашата, с определенията на потенциалната енергия Ер, е пълна, ще дам едно просто обяснение. То се налага, защото на различни места се използват доста противоречиви формули. Едните са със знак плюс, други със знак минус и така объркването е пълно. Да не говорим за многото понятия в термодинамиката, които обясняват едно и също нещо по различен начин. Опитвам се да опростя нещата. За целта ще разгледам потенциалната енергия при гравитацията, където се разбира по-лесно. Разглеждаме планетата Земя с маса М и потенциалната енергия Ер на тяло с маса m. Когато две тела се привличат гравитационно, най-ниската потенциална енергия помежду им е когато двете тела са най-близо едно до друго. В нашия случай тялото с маса m има най-ниска потенциална енергия Ер, когато се намира непосредствено на земната повърхност. Приемаме тази най-ниска Ер = 0. Силата на привличане между телата с маси M и m се дава с формулата:
                              F = - GmM / r^2 , където
G = 6.67 x 10^-11, [N.m^2 / kg^2]  -  гравитационна константа
r, [m] - разстояние между телата
M = 5.96 x 10^24 [kg]   -  маса на Земята
   Въвеждам константата К = GmM и така гравитационната сила става:  F = - K / r^2. Тази сила е функция на разстоянието между телата, т. е. имаме F(r). Започваме да издигаме бавно тялото с маса m като му действаме с противоположната сила
                               F = K / r^2,           която е със знак плюс.
   Тя също е функция на разстоянието F(r) и нека да я начертаем:
   Като умножим тази сила F, с която повдигаме тялото, по преместването във височина dr, ще получим нарастването на потенциалната му енергия dEp или:
                                       dEp = F.dr
   Сумирайки елементарните нараствания на потенциалната енергия dEp от нулевото ниво Ro до дадено ниво r, ще получим стойността на потенциалната енергия Ep(r) за това ниво r. Интересното тук е, че ако сумираме всички dEp от нулевото ниво до нивото, когато разстоянието клони към безкрайност, ще получим максималната възможна потенциална енергия за тези тела с маси M и m:
                                Ep(max) = K / Ro ,  където
К = GmM е константа, а Ro = 6.366 x 10^6 [m] е земния радиус.
   От графиките се вижда, че колкото тялото с маса m е по-далече от земната повърхност, толкова с по-малка сила F можем да го издигаме нагоре. Така прирастите на потенциална енергия dEp с нарастване на височината стават все по-малки и по-малки като клонят към нула, когато разстоянието клони към безкрайност. И затова графиката на потенциалната енергия Ep(r) при големи стойности на разстоянието r се насища и клони към Ep(max).
   Ако сравним графиката на z(T) от файла "z за водород p=const.jpg" (приложен в предния ми пост) с графиката на потенциалната енергия Ep(r) тук, ще видим тяхната прилика. Затова казвам, че променливата z може да се разглежда като характеристика на потенциалната енергия на нагряваното тяло.

Неактивен atos

  • Global Moderator
  • Много Напреднал
  • *****
  • Публикации: 2 215
  • Рейтинг: 483
  • Стара върба не се превива...
Re: Термодинамика и основни формули
« Отговор #3 -: Март 05, 2017, 02:07:20 am »
Всичко това, разбира се, е валидно за константно етерно налягане около разглежданата материя, което условие сегашната Наука умело пренебрегва :D

Неактивен PyroVeso

  • Специалист
  • Стабилен
  • ***
  • Публикации: 636
  • Рейтинг: 214
  • Life is a DIY project!
Re: Термодинамика и основни формули
« Отговор #4 -: Март 05, 2017, 03:41:24 pm »
Atos, би ли обяснил как се получава неконстантно етерно налягане? Примерно градиентно, дивергентно или някакво друго?
Освен това, ако етерът наистина "се стича" към повърхността на материалните тела, създавайки налягане върху нея, къде отива той след това? В тях ли се всмуква и да се концентрира вътре, или се отклонява от повърхността и изтича нанякъде?
Хич не мога да си го представя... Ако се просмуква надолу, Земята би трябвало да натежава. Тя обаче на практика постоянно олеква, губейки вода и атмосфера.

Неактивен atos

  • Global Moderator
  • Много Напреднал
  • *****
  • Публикации: 2 215
  • Рейтинг: 483
  • Стара върба не се превива...
Re: Термодинамика и основни формули
« Отговор #5 -: Март 05, 2017, 04:07:38 pm »

Етерът не се "стича"!
Той е среда, в която съществува всичко познато ни!
Енергиите, движещи се в него образуват въпросното налягане, предизвикващо гравитацията!
Неконстантно е етерното налягане в зоната на черна дупка или по протежението на космическа струна.
Или дори ако щеш, около планета с изместен център на тежестта спрямо геометричния - Луната е пример за такава!

Освен това, ако етерът наистина "се стича" към повърхността на материалните тела, създавайки налягане върху нея, къде отива той след това? В тях ли се всмуква и да се концентрира вътре, или се отклонява от повърхността и изтича нанякъде?
Все едно да питаш къде отива водата, която изтласква потопен балон с въздух...

Активен dmitarp

  • Сериозно Активен
  • ***
  • Публикации: 306
  • Рейтинг: 34
    • Flow design
Re: Термодинамика и основни формули
« Отговор #6 -: Март 05, 2017, 07:01:19 pm »
Тъй като термодинамиката борави със статистически величини, има ли повече от един милион частици в една система то тя е валидна за нея, независимо в какво състояние е. Ако имаме няколко частици в една система то тогава се използва квантовата механика, за описание на състоянието и.

Неактивен atos

  • Global Moderator
  • Много Напреднал
  • *****
  • Публикации: 2 215
  • Рейтинг: 483
  • Стара върба не се превива...
Re: Термодинамика и основни формули
« Отговор #7 -: Март 05, 2017, 07:14:57 pm »
Да,така е. Само се променят константите за съответната среда/система.

Неактивен Maistora52

  • I'm first Omnologist in World
  • Global Moderator
  • Много Напреднал
  • *****
  • Публикации: 1 547
  • Рейтинг: 299
  • СВОБОДАТА, Санчо, е на върха на копието!
    • Магнитни генератори "AMAG - Terra, Tornado, Terminator
Re: Термодинамика и основни формули
« Отговор #8 -: Март 06, 2017, 09:44:08 am »
Мили, драги колеги! ............................нещата са почти пределно ясни:

1. Имаме ЕДНА среда всред която е всичко познато и непознато нам! - тази "среда" се нарича Пространство.

2. Тази Среда (пространство) не е Празна/о - изпълнено е с Вещество (материя) на всички "нива" на структуриране - от кварки и мю-бозони до Вселенски "мехури"... (а някъде, в една нищожна точка, нейде "по средата", се намират нашите общо взето невежи мозъци.

3. От горните две твърдения (постулати) излиза, че Среда (пространство) и Вещество (материя) са тъждествени - в смисъл, че едното се "изразява" (парадира) чрез другото.

4. Тъй като следва едно много сложно мое обяснение на феномените (проявленията) - гравитация, магнетизъм, електро-магнетизъм, силни (адронни)  и слаби  (лептонни) взаимодействия,  ПЛЮС Пето основно взаимодействие - наричам го "М" взаимодействие - просто съм длъжен да ви представя в конспективен вид всичко това, като се самоцитирам с Петте основни Постулата на (моята) ЕТВ - Единна Теория на Всесъществуващото, а именно:
   I - Всичко е Навсякъде!
   II - Всичко си Взаимодейства!
   III - Всичко се Променя!
   IV - Всичко е Обусловено!
   V - Нищото не съществува!
Има малко по-подробни обяснения тук http://art-omnology-yoga.blogspot.bg/p/blog-page_5.html
Постановките са плод на десетилетни медитации върху ОТО и СТО (на Айнщайн), Ед.Фредкин, Ед Уитън и Ед Мичъл, Стивън Хокинг, Ст. Уайнбърг, Карл Сейгън, Бенуа Манделброд, Кенет Кларк и много още други - да не изреждам руснаците, както и плеяда големи писатели фантасти като А.Азимов, Арт. Кларк и др.

Така, от това следва, че Етерът Съществува - ЗАДЪЛЖИТЕЛНО - Той е просто "ниво на изява" на структуриране (парадиране, изява) на Веществото намиращо се ВСРЕД, успоредно, съвместно, взаимопроникнато с всички "останали" нива. Дали ще наричаме Етера - поле, или ниво, или среда - няма значение. От значение е, "големината" на изграждащите го частици и Формата на взаимодействията между тях.
Именно Николо Тесла твърди същото в кореспонденция с Айнщайн, който от своя страна се двоуми три десетилетия има или няма такова "животно" наричано Етер.

 Разбира се, Термодинамиката в настоящият и "конспект" не може да обясни явленията случващи се на квантово ниво, и затова се конструира Квантовата Динамика (механика).
От своя страна, и Термодинамиката и Квантовата Динамика не могат да обяснят наличните явления и случващото се в МакроКосмоса - Черните дупки, Пулсарите, Квазарите, Гравитационните лещи, Гравитацията, Магнетизма и най-вече - Защо наблюдаваното Пространство извън земната атмосфера е черно, а не светло ... и се появяват нови теории и хипотези - за "изкривяване" на Пространството, за Тъмна Материя, за Тъмна Енергия и какво ли още не?!

Задължителни са "острите сблъсъци" на мнения - като по-горните - защото и от тях произлиза често Истината, но тук (във форума) най-често  някой вземе да "изпуска парата" с някоя реплика или епитет, и "хорцето" на което сме се хванали се КЪСА!
Че е невъзможно всички да мислим еднакво, с еднакви думи, изрази и обяснения е повече от ясно. ама вземете се в ръце и се опитвайте с търпение и добросърдечие да схващате мнението на опонента си.

Конкретно за горни някои пререкания съм длъжен да кажа, че подкрепям твърденията и обясненията на Атос (никой не е случайно тук!!!), както и да помоля някои от останалите да мислят повече, преди да кажат нещо.

Бих завършил пледоарията си, като се опитам да вметна, че нашият форум е за широко скроени хора! - смешно изглежда сами да си вталяваме кройките!
« Последна редакция: Март 14, 2017, 11:01:22 pm от atos »

Неактивен Иван Димов

  • Експериментатор
  • Стабилен
  • ***
  • Публикации: 735
  • Рейтинг: 125
  • Невъзможно нещо е да докажеш, че нещо е невъзможно
Re: Термодинамика и основни формули
« Отговор #9 -: Март 09, 2017, 01:18:28 am »
   Сега ще намеря коефициента на полезно действие на идеален газ – КПД (идеал). Тръгвам от формулата за идеален газ:
                          PV = RT, в която
P, [Pa] – налягане в паскали
V, [m3/mol] – обем на 1 mol, в който има числото на Авогадро частици
R = 8,314 [J / mol. K] – моларна газова константа
T, [K]  – абсолютната температура в Келвини
   Когато налягането е P = const, можем да запишем:
                        P.dV = R.dT,   която формула показва, че при промяна на обема се променя и температурата за да остане налягането постоянно. Това е логично, защото при увеличаване на обема се увеличава площта на граничната повърхност на газа с околната среда, която го натиска с налягане Р. При това раздуване ако температурата на газа не се промени, частиците ще удрят със същата скорост вече по-голямата площ, което ще рече понижено налягане. Затова по-голямата площ иска по-висока температура за да остане P = const. Всъщност P.dV е работата, която извършва идеалният газ за преодоляване на налягането, с което външните частици го натискат. Или:
                      dA(идеал) = P.dV = R.dT
   За един мол реален газ основното уравнение е: 
                      dQ = dEk + dEp + dA(реал) ,   в което
•   dQ е топлината, вкарана от отвън в нашия реалния газ като dQ > 0, когато топлина влиза в газа, а dQ < 0 когато излиза. Всъщност dQ е енергията на топлообмена на разглеждания газ с околната среда.
•   dEk е промяната на кинетичната енергия на газа като:
                    dEk = ND.dT = 1,5.R.dT = 4П.dT ,     
тук П = 3,14
R – моларната газова константа
N – числото на Авогадро, а D = 1,5.k(Болцман)
   Температурата на газа всъщност това е неговата кинетична енергия. Колкото е по-висока температурата, толкова е по-голяма кинетичната му енергия. При постоянна температура T = const имаме dT = 0 и dEk = 0.
•   dEp е промяната на потенциалната енергия на газа. Тази промяна всъщност е работата, която се извършва срещу вътрешните за газа сили – частиците на самия газ се привличат помежду си и за преодоляването на тези сили се извършва работа dA(вътре) = dEp. При идеалния газ се приема, че частиците не взаимодействат помежду си с някакви вътрешни сили, а единствено действат със сили на граничната повърхност за да уравновесят външното налягане. Затова при идеалния газ няма потенциална енергия. Няма енергия за преодоляване сили на привличане между частиците. При идеален газ dEp = 0.
•   dA(реал) е работата срещу външното налягане или за преодоляването на външните сили, с които външните за нашия газ частици натискат граничната повърхност.
    За един мол идеален газ основното уравнение се записва така:
              dQ = dEk + dA(идеал),  понеже dEp = 0.
   Разделям вляво и вдясно на dQ и получавам:
                1 = dEk / dQ + dA(идеал) / dQ,
тук    КПД(идеал)  = dA(идеал) / dQ   е коефициента на полезно действие на идеалния газ. Получаваме:
                 КПД(идеал) = 1 - dEk / dQ
   Замествам dQ с неговото равно и получавам:
             КПД(идеал) = 1 - dEk / [dEk + dA(идеал)],
 замествам dA(идеал) с неговото равно и получавам:
              КПД(идеал) = 1 - dEk / [dEk + R.dT],
замествам dEk с неговото равно и получавам:
               КПД(идеал) = 1 – 1,5.R.dT / [1,5.R.dT + R.dT]
Следва     КПД(идеал) = 1 – 1,5.R.dT / [2,5.R.dT]
     или      КПД(идеал) = 1 – 1,5 / 2,5 = 1 – 0.6 = 0.4
   Окончателно получихме за КПД-то на идеалния газ:
        КПД(идеал) = 0.4 ,   което ще рече само 40%.
   Тук обръщам внимание, че за разлика от реалния газ, идеалният газ не може да извършва работа при постоянна температура, което се вижда от неговото уравнение dA(идеал) = P.dV = R.dT. При постоянна температура T = const имаме dT = 0 и следователно  dA(идеал) = 0.

    Сега да видим какъв е коефициентът на полезно действие на реален газ КПД(реал).
   Сравняваме двете основни уравнения:
                 dQ = dEk + dEp + dA(реал)    за реален газ
                 dQ = dEk + dA(идеал),     за идеален газ
   Тъй като  dQ  и  dEk са идентични и в двете формули, следва:
                  dA(идеал) = dEp + dA(реал)   
   Това е логично, защото dA(идеал) е работата, която се извършва срещу външните сили при липса на вътрешни сили на взаимодействие между частиците на идеалния газ. И цялата вкарана енергия dQ отива за извършването на тази работа и за вдигане на температурата (dEk). При реалния газ обаче имаме и вътрешни сили за преодоляване, освен външните и вкараната топлина dQ отива за извършване на две работи – едната е  dA(вътре) = dEp,  а другата е  dA(вън)  = dA (реал) , отделно част от вкараната енергия отива за вдигане на  dEk (температурата).
   Деля на dQ двете страни на равенството :
                     dA(идеал) = dEp + dA(реал)   
             dA(идеал) / dQ = dEp / dQ + dA(реал)  / dQ 
                 КПД(идеал) = dEp / dQ + КПД(реал)
   По-горе намерихме, че КПД(идеал) = 0.4, заместваме го тук и получаваме:        КПД(реал) = 0.4 - dEp / dQ      Това КПД е валидно само, когато имаме промяна на температурата.
   Сега да сметнем КПД-то на реален газ при постоянна температура T = const и следователно dT = 0 и dEk = 0.
   От основното уравнение:
   dQ = dEk + dEp + dA(реал)      махаме    dEk = 0 и получаваме:
         dQ = dEp + dA(реал)  ,   делим вляво и дясно на  dQ
               dQ / dQ  = dEp / dQ + dA(реал) / dQ
   получаваме     1 = dEp / dQ + КПД(реал)
или окончателно      КПД(реал) = 1 - dEp / dQ      Това КПД е валидно само, когато температурата е постоянна T = const.
   Да ги напишем двете едно до друго:
           КПД(реал) = 0.4 - dEp / dQ     за Т # const.
           КПД(реал) = 1 - dEp / dQ      T = const.
   Следва продължение ...



« Последна редакция: Март 09, 2017, 01:50:42 am от Иван Димов »

Неактивен Иван Димов

  • Експериментатор
  • Стабилен
  • ***
  • Публикации: 735
  • Рейтинг: 125
  • Невъзможно нещо е да докажеш, че нещо е невъзможно
Re: Термодинамика и основни формули
« Отговор #10 -: Март 14, 2017, 10:52:02 pm »
   Тук ще ви дам една моя програма, която пресмята потенциалната енергия на тяло с маса 1 кг., намиращо се на х метра от земната повърхност. Задайте в нея х1=0 метра и х2= 10000000 метра (и повече може) и ще видите графиката на потенциалната енергия. Сложил съм и упътване за работа с програмата.
   Пускам също два файла, които намерих в мрежата за потенциална енергия между два атома водород. Вижда се графика с ярко изразен минимум. Аз смятам, че физически по-коректно е именно този минимум да бъде избран за нулево ниво на потенциалната енергия. Потенциална значи енергия, която може да върши работа. Ако потенциалната енергия Ер > 0 , значи има някакъв запас енергия, който може да се превърне в кинетична енергия и работа. Така Ер може да намалява до нула като се превръща в кинетична енергия. Когато Ер=0, значи вече няма потенциална енергия. Няма как потенциалната енергия да бъде отрицателно число. Този произволен избор на нулево ниво на потенциалната енергия е възможен само, защото в практиката се използва не Ep, а dEp, т. е. промяната на Ер. Но за правилното разбиране на физическия смисъл на потенциалната енергия трябва да се приеме нулевото ниво, което наистина е нулево. Там където показаната графика има минимум, имаме равенство на силите на привличане и отблъскване на двата водородни атома. Именно в този минимум потенциалната енергия се е изчерпала и повече не може да върши никаква работа и да ускорява частиците кинетично. В този минимум Ер=0. За да променим разстоянието между частиците в този минимум трябва да извършим работа като така ще увеличим потенциалната енергия от нула до някаква положителна стойност. При това е без значение дали ще приближаваме частиците една до друга или ще ги отдалечаваме, защото dEp=F.dx, а F и dx са с еднакви знаци - или само положителни при отдалечаване на частиците или само отрицателни при тяхното приближаване. И в двата случая dEp>0, което показва, че потенциалната енергия от нулевото ниво в минимума, може само да расте.
   Прилагам 3 файла.